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Abstract

This paper proposes the use of VLSI technology to perform relational database operations
directly in hardware. It is shown that relational computations, such as intersectin,
remove-dpticates, union, join, and divuiion, can all be pipelined elegantly and efficiently on
networks of processors having an array structure. These (systolic) processor arrays are
readily and cost-effectively implementable with present technology, due to the extreme
simplicity of their processors, and the high regularity of their interconnection structures.

-Crc 1 ni.- For

ISI

//
: 5



TABLE OF CONTENTS I

Table of Contents

1. Introduction 1

2. Systolic Arrays and Relational Database Considerations 3

2.1 Systolic Arrays 3
2.2 Processors 3
2.3 Representation of Relations 4
2.4 Union-Compatibility 5
2.5 Multi-relations 5
2.6 Notation 5

3. Arrays for Tuple Comparison 7

3.1 Linear Comparison Array for Performing One Tuple Comparison 7
3.2 Two-Dimensional Comparison Array for Pipelining Many Tuple Comparisons 9
3.3 Matrix Notation 10

4. Arrays for Intersection -- A Detailed Example 12

4.1 The Intersection Operation 12
4.2 The Intersection Array 12
4.3 Remark 14

5. Arrays for Removat of Duplicate Tuples 15

6. Arrays for Join 17

6.1 The Join Operation 17
6.2 The Join Array 17
6.3 General Case 19

6.3.1 Join Over More Than One Column 19
6.3.2 Non-Equi-Join 19

7. Arrays for Division 21

8. Remarks on Implementation and Performance 24

9. Remarks on the Organization of an Integrated Systolic System 26

References 29



SECTION I INTRODUCTION

1. Introduction

LSI technology allows tens of thousands of devices to fit on a single chip; VLSI technology

promises an increase of this number by at least one or two orders of magnitude in the next

decade. This paper proposes one method of exploiting this technology advance: the

construction of special-purpose VLSI chips for relational database operations. These

special-purpose chips are to be attached to a conventional host computer, or used as-s-.

component in a larger special-purpose system, such as a database machine. (We suggest one

such database machine at the end of this paper.) .4,

In [5] a structure called a systolic arrayl is proposed for implementation in VLSI. These

arrays of processors have the following desirable properties:

1. They can be designed and implemented with only a few different types of simple
cells.

2. The array's data and control flow is simple and regular, so that cells can be
connected by a network with local and regular interconnections. Long distance
or Irregular communication is not needed.

3. The array uses extensive pipelining and multiprocessing. Typically, several data
streams move at 'constant velocity, over fixed paths in the network, interacting
where they meet. In this fashion, a large proportion of the processors in the
array can be kept active, so that the array can sustain a high rate of data flow.

VLSI designs based on systolic arrays tend to be simple (a consequence of property 1),

modular (property 2) and of high performance (property 3) -- for more discussion of the

attractiveness of the systolic array approach, see (3]. In the present paper we illustrate the

use of systolic arrays in performing relational database operations.

In section 2 we give details concerning the notion of systolic arrays, and present some

concepts and notation for discussing relational database operations. In section 3, we describe

the basic building block of several of our systolic arrays: a systolic processor array to

compare two tuples. Section 4 includes a detailed systolic example: an array to rapidly

perform the intersection (or difference) operation on two relations. In sectior 5 we use an

array identical to the intersection/difference array, to remove duplicates frrm acollection of

'The word ",ysol" was borrowed from physiologists, who use it to refer to the rhythmically recurrent
contractions of the heart, which pulse blood through the body. For a systolic array, tPe action of a cell or processor is

onal6gous to that of the heart. Each cell rogularly pumps data in and out (performing some short computation before
each "contraction"), so that a regular flow of data is kept up in the network. M; iy systolic arrays have been designed
recently, and are surveyed in (7).
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tuples, and to perform the operations of union and projection on relations. In sections 6 and

7 we detail relational operations (join and division) that are substantially different from the

intersection-like operations, but still lend themselves to simple implementation with systolic

arrays. Section 8 remarks on some implementation and performance aspects of the systolic

arrays proposed in this paper. Section 9 discusses the architectural issues of an integrated

system capable of using many types of systolic arrays.
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2. Systolic Arrays and Relational Database Considerations

2.1 Systolic Arrays

Regular geometric structures are typically used in systolic arrays. For the present paper

we' use predominantly orthogonally and linearly connected arrays of processors (both of

which are shown in figure 2-1), although hexagonally connected arrays as in [5] would work

as well in many instances.

(a) (b)

Figure 2-1: Orthogonally and linearly connected processor arrays.

We find that these arrays facilitate many relational database operations by allowing swift

Interaction among the tuples of two relations, with a set of temporary results also traveling

through the array. Typically, the relations move top-to-bottom and bottom-to-top, and the

temporary results move left-to-right. All of the data in the array moves synchronously. As a

piece of data passes through a processor, it may have some computation performed' on it;

then it is passed on to the next processor. The final results of the array are sent out a side

of the array.

2.2 Processors

In figure 2-2 we show the prototype for the processor used in the orthogonally or linearly

connected systolic structure. The processor has three input lines and three output lines. For

each "pulse" of the systolic array, inputs come in on the input lines, and outputs leave the

processor on the output lines. In the intervening time, all of the work (computation) of the

processor is performed -- the processor computes some simple transformation on the data

which it has just received, in preparation for shipping it out at the next pulse. VLSI arrays
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J.t ]

(a) (b)

Figure 2-2: Orthogonal and linear processor prototypes.

are greatly simplified if most processors in the array are identical. This is the case for the

arrays presented in this paper. Given the orthogonally or linearly connected array structure,

and the processor prototype described here, it is the algorithm actually executed by each

processor that determines the function of the array. Therefore, to define a systolic array to

perform a specific relational operation, we specify the algorithm for the processors in a

systolic array. The sections below consist of such specifications and an explanation of how

they actually produce the desired result.

2.3 Representation of Relations

In the following discussion, we assume some familiarity with the basics of relational

database theory (see, for example, (1, 2]). A relation is a set of tuples. Each tuple consists

of an ordered sequence of elements. It is these elements that are fed through our systolic

arrays. The tuples in a relation, however, are not necessarily ordered in any particular

fashion.

In a relation, an element can be of any data type:, an integer, a boolean value, a string, etc.

We wish to give all of these a uniform representation, in order to simplify the design of

systolic arrays to process relations. The assumption we make is a common one in the

implementation of relational database systems. We assume that the elements from any

particular column in a relation are selected only from one underlying domain. Each member of

the domain is uniquely and reversably encoded into an integer. These integer encodings are

the form in which the elements are stored in the relations, and the list of encodings is stored

separately. Whenever necessary, the integers are decoded into the appropriate value;

however, encoding and decoding are usually only necessary for Input or output: that Is, for

use by humans. Most relational operations are logically the same whether they operate on
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integers or, say, strings or calendar dates. Since -- for our purposes -- integer operations

are more convenient, we assume that relations are stored as tuples of integers (and we are

not concerned with encoding and decoding).

2.4 Union-Compatibility

Certain relational operations such as union and intersection can only be performed

between relations that are union-compatible. Two relations are said to be union-compatible

if the following two conditions hold:

/ - They have the same number of columns (and thus tuples from the two relations
have the same number of entries).

- Corresponding columns from the two relations have entries drawn from the same
underlying domain.

This definition is an attempt to capture the informal notion that a tuple from one relation

could legally be a member of the other relation, in that the respective columns, of the two

relations are defined on the same domains.

2.5 Multi-relations

A multi-relatiorn Is an extension of the concept of a relation in which duplicate tuples are

allowed. (This is by analogy with the term "multi-set," since a relation can be viewed as a

set of tuples.) This is a notion that we will find useful later in the paper. Multi-relations are

usually generated as the intermediate results of relational operations. For example, suppose

we remove a few columns from a relation (which is the projection operation). The

intermediate construct we obtain before we remove duplicate tuples to produce the new

(result) relation is a multi-relation.

2.6 Notation

We briefly summarize the notation used in the remainder of the paper. Relations and

-' multi-relations are denoted by capital letters: A, B, C. Tuples that are members of these are

( denoted by subscripted lower-case letters. The ith tuple of A is denoted by a, or by aj(A, If
-we wish to indicate membership. In turn, elements in tuples are double-subscripted: aik is

the kth element of a%, and the whole tuple can be exhibited as ai - <a,1,di,,2,.,an>. The

letter n Is usually used to denote the number of tuples in a relation (the cardinality of the

relation, since a relation is a set): IAI - n. The letter m usually designates the number of

elements in a tuple in the relation in question.
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Letter T represents a boolean matrix that contains results of logical operations. The

(ij)-th entry of T, tij, is usually used to denote the result of a comparison between the ith

tuple of a relation and the jth tuple of another. Where we wish to display the formation of

tij over time, we use the notation t for the result after the kth time step; t,,t i= and ti nflii k tj
denote specific Instances (the first and the last) of ti1 (When no confusion will thereby

result, we use the same notation t to refer to t-kfor any k.) Finally, the notation ti is used

to designate the result of some logical operation on all of the members of the ith row of T,

for example, the OR or AND of tik, for all k.
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3. Arrays for Tuple Comparison

In several of the relational operations described below, it is necessary to test for equality

between a pair of tuples, one from each of two relations. (Two tuples, at(A and b /B, where

A and B are union-compatible relations or multi-relations, are said to be equal if and only if

element aik equals element bjk for 1 _< k i n.) For example, in the intersection operation,

the intersection of two relations, say A and B, consists of those tuples which are in both A
and B. Forming this intersection, then, requires many tests for equality between tuples, ,(A

and bI<B. In this section, we first describe a linear systolic array of processors capable of

performing one such comparison. We then combine many copies of this basic structure to

form a two-dimensional systolic array that can pipeline many tuple comparisons.

3.1 Linear Comparison Array for Performing One Tuple Comparison

i,3

a, 2

TRUE FINAL OUTPUT

b.

.- , -
b ,,

b. 3

Figure 3-1: Tuple comparison array.

A tuple comparison can be done by the linear array of processors in Figure 3-1. A single

processor from the array is shown in more detail in Figure 3-2. One can see that the

processor array in Figure 3-1 is able to compute the AND of the comparison results from all

of the individual element comparisons. More precisely, at each step the kth processor (from
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a8N bOUT

tOUT tIN (a IN b IN

"OUT" 'IN t IN >>t OUT

b *.-b
OUT IN

aOUT b IN

Figure 3-2: Individual comparison processor.

the left) in the array compares the two elements aik and 6jk, and outputs on its output line

tOUT the AND of this comparison result with the input to the processor on input line tIN

(which is the output of the (k-1)st processor). Thus, if the input to the left-most processor is

the value TRUE, then, by induction, after m time steps the output at the right-most processor

of the processor array will be a bit indicating whether the two tuples are equal. That is, this

output will be TRUE if @nd only if all of the comparisons of individual elements produced

TRUE. (Notice also that if the initial Input is FALSE, then the output at the right side of the

array is guaranteed to be false. Surprisingly, this fact will be useful in later sections of the

paper.)

To make this all work, all of the data must be in the right place at the right time. This is

why the inputs to the individual processors are "staggered" (as shown by the "slanted" input

tuples in figure 3-1) so that elements aik and bjk arrive at the kth processor and are

compared at the kth time step. Also at that time the AND of the results of previous

comparisons arrives at the same processor, so that it can be ANDed with the new comparison
result at the processor.

We summarize the function of the linear comparison array shown in figure 3-1. This array

compares two tuples (presumably one from each of two relations), and forms the result of the

comparison by propagating intermediate versions of that result to the right through the

array. By staggering entries from the tuples one can assure that the output from the
right-most processor of the array will be the result of the equality test on the two tuples.
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3.2 Two-Dimensional Comparison Array for Pipclining Many Tuple Comparisons

Figure 3-3: Two-dimensional (orthogonal) comparison array.

We concatenate, vertically, several of the linear comparison arrays described above, to
form a 2-dimensional processor array, as shown in Figure 3-3. This orthogonally connected,
2-dimensional processor array can perform many tuple comparisons in parallel. To
accomplish this, we feed the relations A and B inlo the array, from the top and bottom,
respectively.

- We feed the relations at times such that the elements of any given tuple, say eq,
are "staggered," so that the element aik enters the array one time step before

-,. the element di.k 1. This has the effect of staggering the inputs to each of the
component linear arrays, so that it will perform exactly as the single linear array
described above.

- We pipeline tuples in each relation through the, orthogonal processor array, in
such a way that each tuple is two steps behind the tuple that proceeded it into
the array. This assures that any particular pair of tuples aj(A and b B will
eventually cross each other. More specifically, first aj, will meet bj I in the
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left-most processor of some row in the processor array. These two elements
will be compared, and the result of this comparison will be ANDed with the initial
input to that row of processors (TRUE for our present purposes). At the next
time step, as the tuples ripple through the array, element ai,2 will meet b,2 in
the processor to the right, in the same row. They will be compared there,'and
the result of the comparison will be ANDed with the output from the first
processor to produce the output of the second processor. Processing continues
In this fashion, and the intermediate boolean result of the ANDs propagates to
the right through that particular row of processors, until -- as discussed above
-- the right-most processor outputs a boolean value that indicates whether tuple
a1 equals tuple bi.

In Figure 3-4, the tij represent intermediate values for the results of comparing tuples a

with tuples b6 (Note that in the figure, the initial value for t 3 ,3 is just about to enter the

processor array.)

3.3 Matrix Notation

For convenience in discussion, we express the results produced by a comparison array In

the form of a matrix T. The elements of the matrix are defined as follows:

TRUE if tinitia.TRUE, and aikb6 for all Isk_<rn,
tij - I i

I FALSE otherwise.

We see that it is these tij that are produced at the right-most column of the array described

in Section 3.2.

In the following sections, we add additional processors which manipulate these t.j's after

they leave the comparison array. These manipulations will be shown to produce the

equivalent of relational operations.
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a
33

b

a3 t3

b
12

21 13

t 322 t2 t

b
22

21 t2 3t1

bb

33

Figure 3-4: Data moving through .the comparison array.
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4. Arrays for Intersection -- A Detailed Example

In the preceding section, we saw how we could usc a systolic comparison array to quickly

do pairwise comparisons on sets of tuples. The results of these comparisons (ti ) are sent

out from the right side of the array. By examining a particular relational operation, namely

Intersection, in some detail, we illustrate how these individual results are combined in

applications.

A. I The Intersection Operation

Consider the operation of finding the intersection of two union-compatible relations

C-AnBE
The relation C consists of those tuples that are in both relation A and relation E. This is

exactly the same as finding those tuples in A which are also in B. Thus we need only examine

the tuples In A for membership in B. This is the basis for our "intersection array." We

compare each tuple ai(A pairwise with each tuple b/B. For each ai if al matches some b.0

then &I is a member of the intersection. This is where the comparison array described in the

preceeding, section comes in handy.

4.2 The Intersection Array

The intersection array for performing the intersection operation consists of a

(two-dimensional) comparison array on the left and a (linear) accumulation array on the right

(see figure 4-1). The comparison array performs comparisons between tuples in A and tuples

in 8, to produce the matrix T, whereas the accumulation array accumulates tij to form:

ti a ORISj~n tij. (4.1)

One can easily see that a tuple ,i(A is a member of the intersection, i.e. ai matches some

bjB, if and only if ti is true.

Figure 4-1 illustrates how the intersection array computes the intersection of two 3 x 3

relations. Processors in the accumulation array are called accumulation processors; their

function is as follows. At each time step, an accumulation processor takes its left input (some

tij from the comparison array), OR's that with the top input (some ti), and passes on the

result as its output (the updated ti) to the processor below. More specifically, a ti is formed

in the accumulation array in the following manner. First ti,i reaches an accumulation

processor from the comparison array on the left. At the next time step, this value is sent to

the accumulation processor below. During the same time step, ti,2 is sent into that

accumulation processor from the left, and is ORed with t;,1. Similarly, at the next time step,

the result of this OR is sent down one processor, and is ORed with t, 3 , which is just arriving
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Comparison Accumulation
Array Array

t3

RESULTS

Figure 4-1 : Intersection array, consisting of two modules:
(2-dim) comparison array on the left, and (1-dim) accumulation array on the right.

from the left. In an implementation, the first accumulation processor can be identical in
function to the others, provided we initialize the value moving down through the accumulation
array as FALSE (i.e., t~ i t  - FALSE; in the figure, t3 is about to enter the array with its

initial value). This value is successively ORed with all of the tik, for all /c, and when it leaves
the bottom of the accumulation array, it takes on the value t, specified in equation (4.1). This

designates whether /.is a member of the intersection C, and it is then a simple matter to
use the ti's to generate C from A.

At any time step, accumulation processors that aren't busy (i.e. that have no ti coming in
from the left) simply pass on the t1 that they have. It takes less than the length of the

92
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accumulation array to produce a ti , but different tj are produced in different sub-arrays.

4.3 Remark

We have illustrated the use of the so-called accumulation array at the right of the

comparison array to implement a desired relational operation, namely, the intersection

operation. In general, as shown in the rest of the paper, only simple changes in the

accumulation array or in the input data are required to alter the output of the array to

produce other useful functions. The main "hardware" -- the comparison array -- is

sufficiently general that it need not be changed at all.

As an illustration, we see that after a slight modification the intersection array can be used
to perform the difference operation on two relations. The difference, C, of two
union-compatible relations A and B, denoted C - A - B, consists of those tuples that are
members of A, but are not members of B. When we compute the intersection with the
intersection array, we notice that ti is TRUE for any tuple ai that is in both A and B (Le.,
A n B). We can also see that ti is FALSE for any ai that was in A, but not in B, which is
precisely the condition for ai being in the difference. Therefore, to form A - B, we can use

the intersection array, with the modification that the tuples in the resulting relation
correspond to those ti's which are FALSE, instead of TRUE. (Alternatively, we could just put
an inverter on the output line of the accumulation array.)
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5. Arrays for Removal of Duplicate Tuples

The operation renove-duplicates transforms a multi-relation (defined in section 2.5), A, into

a relation, A', which conteins all of the tuples in A, except that no tuple is duplicated in A'.

The systolic array used for intersection in the last section can also be used for the operation

remoue-duplicates. Instead of comparing relation A to relation B, we compare relation A to

itself, by feeding it into both the top and bottom of the array. (Note that A is

union-compatible with itself.) By doing so, we produce a matrix, T, whose elements are:

TRUE if 1 ni -ialTRUE and aiik=ajk for all 1:<k<_m,I ijtij W I FALSE otherwise.

Our strategy for eliminating duplicate tuples from A is to remove all tuples that are

preceeded by another tuple that equals it. For example if tuples a5, al9, and a73 are all

equal, then in producing A', we wish to remove al 9 and a7 3 from A, leaving a5 in A' (not

necessarily as a. because, for example, a3 might equal a4 ). In our matrix notation, the

problem is then that of removing any tuple aj, where there exists a tij-TRUE, for j<L This is

equivalent to saying that we wish to remove any tuple corresponding to a row in the matrix T

which contains a 'TRUE' in the lower triangle (left of the main diagonal). We could find the

appropriate a, by ORing across each row of T, as far as (but not including) the main diagonal.

Alternatively, we could set the main diagonal and the upper triangle all to FALSE, and then

take the OR across the whole row. This second scheme is what we will do.

For those tij on the main diagonal and in the upper triangle (isj), we set tinitial to FALSE.
ij

This implies that tij will be FALSE for iSj, since the comparison array works by ANDing each

individual comparison result with the current value of tij. The accumulation processors in the

remove-duplicates array act Identically to those in the intersection array. They form the OR

of each row of the matrix T. To produce A', we eliminate from A any row where the resulting

t i is TRUE, and keep the rest. (This is the opposite of the intersection operation, where we

keep those rows with TRUE ti).

Our remove-duplicates array can be used to implement the following relational oporations:

* Union

The union C - A u B of two union-compatible relations, A and B, is the relation containing

all tuples in either A or B, without duplicates. It is straightforward to form A U B by applying
the remove-duplicates operation to the concatenation A+B of A and B:

C - romove-duplicates(A + B).
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In practice, this means that we first form the concatenation of A and B as we retrieve them.

We then put the concatenation through both sides of the remoue-duplicastes array, and what

comes out is a bit-string, indicating which tuples of the concatenation should be in the uio.

Projection

The projection operation is similarly easy, with our remoue-duplucoaes operation. We speak

of the projection of a relation A over a column, or list of columns, f. (Usually, f Is of the form

"first column, second column, fifth column," or "name column, salary column, children column.")

The projection is produced by first finding for each tuple ai(A, the corresponding (smaller)

tuple aip, which contains only those columns from ai that have been specified in f - this can

be done conveniently during the time when the original tuples are retrieved from storage.

The set Af -- a multi-relation in general -- of the resulting smaller tuples is then transformed

into a re(ation by removing duplicate tuples. This is precisely the function performed by our

remove-duplicates array. (Duplicates may occur in Af since we are taking the projection of a

relation which may contain tuples that differ only in columns that are not in f.)
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6. Arrays for Join

6.1 The Join Operation

We illustrate the join operation by describing a special case: the join over a single column.

The more general case is sketched later in this section. The join, C, of two relations, A and B,

over columns CA and CB, respectively, is written C = A J{CA,CB} B. The join, C, is the set of

tuptes, cA, such that ck =. I bj, where a bJ, , for aL(A and VS. (For the join

to be well-defined, columns CA' and CB must be drawn from the same underlying domain.)

The operator "I . is defined to be the concatenation of its two arguments, with their. r-i
exception that only one of aj,CA and b1 ,C6 is included in the concatenation.2

Intuitively, we check all pairs of tuples, ai and b j, taken from relation A and B,

respectively. Where they match in the columns specified by CA and CE, we concatenate the

two tuples. After removing one of the two matching columns (to eliminate redundancy), we

add the concatenation to the join, relation C.

6.2 The Join Array

We can formulate the results of a join again in terms of a matrix. Let the matrix T be

defined as

I TRUE if ai,CA bjCBtij M I

I FALSE otherwise.

That is, tij is true if and only if ai and bj match in the specified columns.

If we have the matrix T, it is straightforward to generate the relation C. For each tij that

has the value TRUE (and for only those lij), we simply retrieve aj and b, and concatenate

them, removing the redundant column. The size of the join, 1C, might be as large as the

product IAIIBI. (This happens in the degenerate case where all tuples in A match all tuples in

-. B in the specified columns.) However, for most applications the number of TRUE ti/s in T is

far less than this product. Therefore, we can usually generate C fast, provided we can

produce T quickly. A fast way of producing T is the concern of this section.

Consider the linear array of processors in figure 6-1. We use this array to produce the

2 Actuelny, authors differ as to whether the redundant column appears in the Join. For example, Date (2) includes it,
but Code original paper (1] omits it.
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41

21

t 32  t21

3% 22 t 11

31

23 12

a 2 l2t13

41

14

Figre 6-1: Join array.

matrix T. The column CA of relation A (column 3 in the example in the picture) is input to the

processor array from its top, and moves down. Similarly, the column C3 of B (column I In the

example) is sent through the array from bottom to top. As the two columns "pass through"

each other, each a4CA will meet each b-,CB. (We send the columns through the array in such

a way that each element follows its predecessor after two time steps so that &U pairs of

*dECA and bj,Cg meet.) When a,CA meets bj,C, a simple comparison suffices to determine

the value of t1 1 These tij are collected at the right of the array. (In the figure, the tij are
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shown coming out from the array.) Unlike some of the operations discussed earlier, here we

are interested in the ti.j individually, and do not perform further accurulation operations on

them.

6.3 General Case

6.3:1 Join Over More Than One Column

In the general case, CA and CB specify more than one column. Their specifications are

constrained in the following way:

- the number of columns specified by CA must be the same as that specified by
CB, and

-the respective columns in the specifications must be based on the same
underlying domains (up to a permutationi which can easily be handled).

Given this, ck (= ail {cCbj) ( C only if ai,CA bcB, which means that tuple ai must match

tuple b1 in a/l of the :6lurins specified by CA and CB. The concatenation operator "I{CACR}"

is defined analogously: the concatenation includes only one copy of the columns over' Vhich

A and B are being joined.

The corresponding modification to the processor array in figure 6-1 is simple. Instead of

having one column of processors in the array, we have several columns: one for each

relational column over which A and B are to be joined. Each processor column is responsible

for comparing di and b in some particular column pair, and the result ti, Is propagated to the

right, in essentially the iame way as in the intersection array. When they reach the right

side of the processor array, the tiis are used directly, without an intervening accumulation

array.

6.3.2 Non-Equi-Join

The join operation we have been considering so far in this section is usually referred to as

the equi-join, since the join is performed on tuples for which the values in columns CA equal

those in columns C. This notion can be generalized to allow any sort of binary comparison

(e.g. 5, >, etc.) to be done between the relevant columns of the two tuples.

The processor array to perform such an operation is easy to construct. For

greater-than-join, say, processors in the array would simply perform that comparison

between CA and CB. ihe particular operation to be performed might be encoded in a few

bits, and passed along, with the aij and tij. Or, it might be preloaded into the array of
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processors. This illustrates that some degree of programnability can often be provided to a

processor array at the expense of additional logic.
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7. Arrays for Division

Division is an operation between two relations (the dividend and the divisor) which

produces another relation (the quotient) as its result. The notation "C - A ! {CA,CB } B"

means that C is the result of dividing A by B over the columns CA of A and C6 of B.

We show how to perform the division operation by a processor array for a restricted case

of division: A is a binary relation and B is a unary relation. Further, CA and C8 specify only

single columns. The extension from this to the general case is straightforward (as in the

preceding section on the join).

Let the dividend A have columns A, and A2 and let the divisor B have column B1, and let

A2 and B, be defined on the same underlying domain (which makes their elements

comparable). Then the divide operation C - A ;A2,3[ B produces a quotient C, having

column C1 defined on the same domain as A,; a value z will appear in C1 if and only if the

pair (x,y) appears in A for every value y appearing in 81 (2]. An example of the division

operation is shown In figure 7-1.

A All A2  6 8I C C1

a a I
a b k
b C
b d

I c
k a

dL b

k d

Figure 7-1: Example of relational division

' Our systolic array for performing relational division consists of two modules: a dividend

array and a divisor array. Figure 7-2 illustrates how the division array works on the
'-example given in figure 7-1. The left-hand column of the two columns of processors in the

dividend array stores (distinct) elements appearing in column A1, one element to a processor.

(These elements -- (i, j, k) for this example -- can be identified by the remove-duplicates

array.) Similarly, elements appearing in the divisor B1 are preloaded into each row of

processors In the divisor array. In the figure, circled elements represent those elements
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DIVIDEND ARRAY DIVISOR ARRAY

j

it

a c

* C

(elements in A )"

(elements in A2 )

Figure 7-2: Division array (in operation).

which are stored at processors.

The dividend array computes for each element appearing in A1 the set of y such that

(xy,)(A. It works as follows. We take each pair (z,y)(A, and pass it into the dividend array

from the bottom; the z into the left column and y into the right column. At each time step,

the z will be in the same processor as some preloaded element x, and the y will be following

one step behind' it, in the column to the right. We compare z to z, and if they match, we
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output a TRUE from the .right side of the processor; otherwise, we produce a FALSE. This

boolean value t arrives at the processor in the right column, just as the associated y arrives

there. If t is true, then y is output from the right side of the processor. Otherwise, some

null value is output.

Thus for each x appearing in Al, the non-null values, output from the dividend array at the

row whose left processor has z stored, are those y's such that (z,y)(A. We see that if these

ys include all the elements in BI, then z belongs to C1. This is checked by the

corresponding row of processors, in the divisor array, which takes the y's as inputs. More

precisely, each processor of the row checks if the element it is storing matches any of the

y's passing from left to right along the row. If every processor of the row finds at least one

such match (which is checked by doing an ANO across the row after the dividend passes

through the array), then the y's contain a, b, c, and d, and thus x be!ongs to C 1. This is the

essential idea behind the division array. One can already see that the division array provides

the same kind of rapid computations (using simple and regular structures) as other arrays

discussed earlier.

"V
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8. Remarks on Implementation and Performance

During the past year, we have designed prototypes of several special-purpose chips at

CMU. These include a pattern-match chip [3], an image-processing chip [6), and a tree

processor for database applications [9]. The pattern-match chip can be viewed as a

scaled-down version of the comparison array in Section 3. (This chip has been fabricated,

tested, and found to work.) The following comments and projections are based partly on our

experience with the pattern-match chip.

In some of the schemes presented in this paper, it is the case that only half of the

processors in a systolic array are busy at any one time. This inefficiency can be avoided in

the following implementation: rather than marching two relations against each other along

the systolic array, we let only one relation move while the other remains fixed. Also, for

simplicity, we have so far assumed that processors in systolic arrays operate on words. In
implementation, each word processor can be partitioned into bit processors to achieve

modularity at the bit-level. A transformation of a design from word-level to bit-level is

demonstrated in [3). In general, many variations on the systolic arrays suggested are

possible. All of these are equivalent, and differ only in implementation details.

Below, we give figures for a reasonable array size for implementation. While such an

array would be large enough for many applications, it is also possible to use the array to

solve problems that will not fit entirely on it. This calls for the technique of decomposing
problems. The technique is best illustrated by a simple example. In the intersection problem,

consider fhe matrix, T, of results. For a large problem, one can simply partition this matrix

into sub-problems small enough to fit on the array; each of these sub-problems would
generate a piece of the matrix.

Intersection is one of the most computationally demanding relational operations, since it
requires fuU tuple comparisons between all possible pairs of tuples. We examine the speed

with which systolic arrays can perform intersection.

We make the following assumptions concerning the size of a typical relation:

- A tuple is of size 1500 bits (or about 200 characters).

- A relation is of size 104 tuples.

The following (conservative) estimates are typical of results that have been achieved with

present NMOS technology:

- A bit-comparator, the fundamental workhorse unit of our arrays, is about
240p x 150p in area. The comparison is performed (very conservatively!) in
about 350ns, including time for on-chip and off-chip data transfer.
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With present technology, chips are about 6000p x 6000p in area. Division gives
us about 1000 bit-comparators per chip. (Notice that this calculation is realistic
only if the design is repetitively regular, which is the case for our systolic
arrays.) We can assume that none of the comparators on a chip incurs delay due
to pin limitations; since the time for a comparison is large relative to off-chip
transfer time (..30ns), we can multiplex about 10 bits on a pin during a single
comparison.

It is practical to construct devices involving a few thousand chips. We assume
1000 chips. This gives us the capability of performing 106 comparisons in
parallel.

Based on these assumptions, we can make the following performance predictions for

intersection. The intersection requires a total of 1.5 x 1011 bit comparisons, since we need

1500 b'it-comparisons for each of the (104)2 tuple comparisons. The time to perform

intersection, therefore, is:

(1.5 x 101 1comparisons) x (350ns / 106 comparisons),

which is about 50ms. We believe that this estimate is extremely conservative, even with

existing technology. If we assume instead, for example, 200ns/comparison, and 3000 chips,

we derive a figure of about 10ms.

The processing speed obtainable from these systolic arrays can keep up with the data rate

achievable with the fast mass storage devices available in present technology. For example,

a moving-head disk rotates at about 3600 r.p.m., or about once every 17ms. Assume that we

can. read an entire cylinder in one revolution, as in some of the proposed database machines

(for a survey of these machines, see [4]). This is a rate of about 500,000 bytes in 17rin. In

a comparable period of time, our systolic array can process (for example, can intersect) two

relations, each of about 2 million bytes.

4-'
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9. Remarks on the Organization of an Integrated Systolic System

Systolic arrays introduced in preceeding sections are capable of rapid processing of

individual relational database operations. To process all of the operations required in a single

transaction or a set of transactions, an integrated system containing several systolic arrays is

needed. Many strategies are possible for the interconnection of the systolic devices. To

decide which interconnection strategy to choose, one must consider the system requirements:

- High capacity for data transfer. As described in the last section, it is feasible
that a systolic array may process hundreds of thousands of bytes per
millisecond.

- Flexibility and generality. The execution order of systolic devices varies greatly
from one transaction to another transaction. Relations may have to be
decomposed to fit the (fixed) sizes of systolic arrays. Results from subrelations
must be stored outside the systolic arrays before they are finally combined.

One organization that seems to match the system requirements is the crossbar switch

interconnection depicted in Figure 9-1. Typically, the system works as follows. Initially, the

relevant relations are read from disks into memories. (Disks with "logic-per-track"

capabilities (8] can of course be incorporated into the system, so that some simple queries

never have to be processed outside the disks.) Then the crossbar switch is configured so

that the relevant memories are connected to the systolic array that will perform the first

operation of the transaction in question. The data is pipelined from the memories through the

switch and through the processor array. The output of the array is pipefined back into

another memory. This is repeated for each relational operation in the transaction. Due to

the crossbar structure, several operations may be run concurrently. The final results are

eventually returned to the disk (or a user's terminal, or printer, etc.) from the memory in

which they reside.

In the future, we plan to perform a detailed analysis of the crossbar scheme and a

comparison of this scheme with other alternative structures. For example, Song [9] has

suggested the use of a tree machine for database applic.ations. The leaf nodes of the tree

machine are responsibtW for data storage, and for a limited amount of processing of the data.

The tree structure itself is used to broadcast instructions and data, and to combine results of

low-level computations on the data. This same tree machine is capable of performing all

database operations. A detailed comparison of these and other database machine structures

Is needed in order to understand their relative merits.
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Memory

Disk

Disk

Figure 9-1: Systolic database system using crossbar switch.
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